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1 Introduc on

In this thesis I will explain elliptic curves, some common vocabulary surrounding them,
some popular relevant theorems and conjectures, and perform an investigation into a
subject of my interest. I will begin with a short introductory chapter to the necessary
vocabulary and ideas to formally state what an elliptic curve is so that the reader may
always have solid grounding as we tour through elliptic curves’ history in the second
chapter. The third chapter of this thesis is a single page cheat-sheet to the parts of
SageMath which I have found the most relevant to elliptic curves through my studies.
Last, the fourth chapter is an investigation into how the infinite part of rational elliptic
curves and the structure of finite field elliptic curves are interrelated. In writing this thesis,
it is my hope that I can make tangible some of the mystery surrounding elliptic curves
through data visualization and historical exposition. Finally, I would like to inspire the
notion that even through explorative programming and heuristic arguments we may create
new scientific discoveries in the world of mathematics.

Prerequisite knowledge assumed includes some familiarity with fields, polynomials, sets,
calculus, and cyclic group theory. The integers Z, rational numbers Q, real numbers R,
complex numbers C, finite fields Fq, and an arbitrary field k will make frequent appear-
ances.

All original pictures which appear in this thesis are hosted online along with example
code. Professor Drew Sutherland at MIT has kindly allowed me to use the Sato-Tate
Distribution image from his website. The Wikimedia Commons is the source for another
three images in this thesis, which appear in the Weierstraß Elliptic ℘ Function figure.

1.1 What is an Ellip c Curve?

Before we can describe an elliptic curve, we must know something about curves. Curves
exist in lots of different contexts: in the cartesian plane, Euclidean space of arbitrary
dimension over arbitrary fields, and a whole lot more. Further, for every field k, there
are many different ways we could construct space with coordinates in k in which a curve
could exist. We will consider two spaces that exist for any field k, the affine and projective
spaces, before we consider the elliptic curves which exist within them.

The affine plane over k, denoted A2(k), is the set of points in k×k for a given field k. A
familiar example of affine space is Euclidean 2 or 3 dimensional space, which are denoted
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1 Introduction

here A3(R) and A3(R). This generalizes to affine space over k, An(k), the set of n-tuples
in k.

The projective plane over k is given by the set of tuples

P2(k) = {(x, y, z) ∈ k3|(x, y, z) ̸= (0, 0, 0)}/ ∼,

where ∼ denotes the equivalence relation where (x, y, z) ∼ (x′, y′, z′) if and only if there
exists some scaling factor c ̸= 0 such that (x′, y′, z′) = (cx, cy, cz).

This equivalence relation can be intuitively thought of as stating that two coordinates are
considered the same point in projective 2-d space if and only if the same coordinates in
affine 3-d space lie on the same line through the origin.

A point on the projective plane is traditionally denoted (x : y : z) since it is only the ratios
between among the coordinates that determines the point. That is, the ratios x : y, y : z,
and z : x will remain constant regardless of the coordinate representation of the point in
P2(k).

An algebraic affine plane curve is a nonempty set of points in A2(k) which are the
solutions of some polynomial in two variables with coefficients in k. That is, if f is a
polynomial equation f(x, y) : A2(k) → k then a nonempty set of points {(x, y)|f(x, y) = 0}
is an algebraic affine plane curve.

An algebraic projective plane curve is a nonempty set of points in P2(k) which are the
solutions of some homogeneous polynomial in the projective plane f(x : y : z) : P2(k) → k
with coefficients in k.

The degree of an algebraic plane curve is taken to be the greatest sum of exponents on
x and y in any single term of the polynomial for which the points on the curve are the
solution set. A polynomial is homogeneous if every term of the polynomial has the
same degree. This is a necessary condition a polynomial whose solution set is an algebraic
curve in the projective plane must satisfy in order to be well defined with respect to the
equivalence relation used to construct the projective plane.

Crunode: y2 = x3 + x2 Ordinary Cusp: y2 = x3 Acnode: y2 = x3 − x2

Figure 1.1: Different Kinds of Degree Three Singularities.
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1.1 What is an Elliptic Curve?

We say that a point on a curve is singular if every partial derivative vanishes. That is,
if f is a curve in n dimensional space, either affine or projective, then we say that f is
singular at some point if

∂f

∂x1

=
∂f

∂x2

= ... =
∂f

∂xn

= f(x1, x2, ..., xn) = 0.

A curve is singular if it contains one or more singular points. Naturally, we say a curve
is nonsingular if it contains no singular points.

Singularities come in two kinds: nodes and cusps. Each of these break down into further
subcategories. For double points, the possibilities include acnodes, crunodes, and ordinary
cusps, while singularities of higher multiplicity could be tacnodes and rhamphoid cusps.
We will only be concerned with the former in the context of elliptic curves.

Finally, we can make the following definition.

Definition. An elliptic curve is a degree three nonsingular plane curve, affine or pro-
jective, with the point at infinity denoted O.

In the affine case, the point at infinity O can be thought of as a symbol we pair the curve
with, and the point O itself does not exist in the (x, y) plane over k. In the projective
case, the point at infinity is simply the point where the curve intersects the line at z = 0.
We will need this point at infinity as the identity to realize the group structure of elliptic
curves.

y2 = x3 + x+ 1 y2 = x3 − x+ 1 y2 = x3 − x

Figure 1.2: Three Example Elliptic Curves
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2 The History of Ellip c Curves

This chapter contains a part of the story of how elliptic curves, a seemingly simple class
of equations to define, have found themselves at the forefront of modern mathematical
research. The story is winding, and has roots in the very origins of algebra: Diophantus’
Arithmetica. Progress in the 19th century on elliptic functions yielded both parametriza-
tion and geometric intuition for complex elliptic curves. The finitely generated abelian
group structure for the rational points of an elliptic curve was discovered in the early 20th
century. Recently, incredible progress has been made over the course of the 20th century
to tie elliptic curves and modular forms together. Elliptic curves, though equationally
only slightly more complicated than conics, present a rich and fascinating subtlty in their
properties and incredible number of mysterious features.

Table 2.1: Timeline of Elliptic Curves.

285 a.d. Diophantus publishes Arithmetica
...

1637 Fermat states Fermat’s Last Theorem
1669 Newton expresses arc-lenghts of ellipses as infinite series
1750 Euler states a group law for Elliptic Integrals
1779 Bezout’s Theorem is Stated

... Gauss, Fagnano, Bernoulli, Legendre, Jacobi, Eisenstein, Abel,
and others work on elliptic functions

1862 Weierstraß Parametrizes ℘
1916 Ramanujan conjectures τ congruences
1922 Mordell-Weil Theorem
1933 Hasse’s Bound
1973 Deligne Proves Weil’s Riemann Hypothesis
1977 Mazur’s Torsion Theorem
1985 Elliptic Curve Cryptography is born
1987 Lenstra’s Integer Factorization Algorithm
1995 Wiles’ Modularity Theorem
2006 Elkies’ Discovery of a Rank ≥ 28 Curve
2006 Proof of the Sato-Tate Conjecture is Finished
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2.1 Discovery and Early Ideas

2.1 Discovery and Early Ideas

Elliptic curves’ history begins early, but little progress beyond Diophantus’ contributions
was made until 17th century and the Age of Reason when Fermat studied integer solutions
to Diophantine Equations and Newton who classified the shapes of real nonsingular pro-
jective cubic curves. Some of the earliest appearances of elliptic curves lie in Diophantus’
text Arithmetica. A problem Diophantus considered has been reworded artfully in modern
language as the following [Bas97].

To divide a given number into two numbers such that their product is a cube
minus its side.

Figure 2.1: y(6− y) = x3 − x

Diophantus, considered by some to be the
“Father of Algebra,” was principally con-
cerned with what is today called the sub-
ject of Diophantine equations, the study of
integer solutions to polynomial equations,
usually with two or more variables. The
elliptic curve Diophantus concieved of was
the equation

y(a− y) = x3 − x,

for which he sought nontrivial solutions
(x, y) when a = 6, and solved with

(x, y) = (17/9, 26/27).

Diophantus was an early character to use
the tangent and secant methods to con-
struct points on algebraic curves. To solve
this problem, he constructed the tangent
line to the elliptic curve given at (−1, 0),
which intersected the curve once again at
his desired solution.

Given Diophantus’ starting point (−1, 0),
he constructed a point with both positive
x and y which satisfied his desired criterion
by using the tangent on an elliptic curve.
While his work makes no explicit mention
of elliptic curves as a set of curves, his methods and desire to find nontrivial rational
solutions to Diophantine equations set the stage for the beginning of the relationship
between number theory and elliptic curves.
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2 The History of Elliptic Curves

2.1.1 Point Doubling

In 1621 Bachet discovered that given a rational solution x, y ∈ Q to the equation

y2 − x3 = c,

then the following is also a solution(
x4 − 8cx

4y2
,
−x6 − 20cx3 + 8c2

8y3

)
.

Early relative to other work on elliptic curves, the point doubling formula is one of the
first hints of the group structure in the history of elliptic curves. Bachet had shown that
given a point on y2 − x3 = c, it may be used to construct another. However this entirely
was outside the modern context of “doubling” and point multiplication on elliptic curves,
a much later development.

2.1.2 Newton’s Considera on of Curves

Figure 2.2:
The Cone of a Curve in P2(R)

In 1667 Newton began to work on classi-
fying generic cubic curves into 72 distinct
categories of polynomial structures, over-
looking 6 in his study. Newton had formu-
lated ideas beginning the study of projec-
tive curves by considering not only the in-
tersection degree counting multiplicity but
also counting points at infinity. While his
proof technique was criticized by Euler for
lacking unifying principle, motivation for
his methods and the beginnings of projec-
tive geometry can be found in his remarks
titled On the Genesis of Curves by Shad-
ows where he gave the theory of perspec-
tive through rays of light casting shadows
of objects onto the infinite plane. Still-
well’s Mathematics and Its History has a
section on Newton’s Classification of Cu-
bics which provides a short and very read-
able introduction to Newton’s classification
[Sti10].
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2.1 Discovery and Early Ideas

2.1.3 Bezout’s Theorem

y2 = x3 + x2 + 1 and the line x = 1 y2z = x3 + x2z + z3 and x = z

Figure 2.3: Bezout’s Theorem Illustrated

First, note that while there are only two intersections between the elliptic curve and line
given in the affine plane, there are three intersections in the projective plane between the
corresponding projective elliptic curve and line in the projective plane. This difference in
the count of intersection numbers in affine and projective space here exemplifies the differ-
ence between the affine and projective versions of Bezout’s theorem, and this distinction
is a crucial theoretical step on the way to elliptic curve addition.

Theorem. If P and Q are algebraic affine plane curves given as polynomials with a con-
stant greatest common divisor and no common polynomial component, then the number
of intersection points between P and Q is bounded by the product of the degrees of the
polynomials.

|{(x, y) such that P (x, y) = Q(x, y) = 0}| ≤ degP · degQ

In volume one of Principia, Newton claims that two curves have a number of intersection
given by the product of their degrees. However, the truth is slightly more subtle than
this.

Theorem. If P (x, y, z) and Q(x, y, z) are algebraic projective plane curves given as poly-
nomials with a constant greatest common divisor and no common polynomial component,
then the number of intersection points between P and Q counting the multiplicity of points
and the point at infinity is equal to the product of the degrees of P and Q as polynomials.

|{(x : y : z) such that P (x : y : z) = Q(x : y : z) = 0}| = degP · degQ

Bezout’s statement of the theorem is an improvement on Newton’s formulation, but it
is still somewhat unlike the modern formulation and proof techniques, for which one
should look to Hartshorne’s Chapter 1 of Algebraic Geometry [Har77] or the appendix on
Projective Geometry in Silverman and Tate’s Rational Points on Elliptic Curves [ST15].
Proofs vary individually, but often one of the crucial concepts to the proof of Bezout’s
theorem is that polynomials over any field are a unique factorization domain, and so every
polynomial may be uniquely factored into irreducible components.

7



2 The History of Elliptic Curves

2.1.4 Addi on and Mul plica on of Points

Figure 2.4: Point Addition

With Bezout’s Theorem in mind, we know that there will always be three points of inter-
section between an elliptic curve and a line if we properly count multiplicity and the point
at infinity. To make sense of the point at infinity in the affine plane, we say that the line
through a point P and infinity is the vertical line through P with infinite slope. In order
to ensure the existence of inverses, we construct addition such that three collinear points
sum to the identity. To sum P and Q, first we construct the line through P and Q, PQ.
PQ intersects our elliptic curve once again by Bezout’s Theorem, and we take this point
to be −(P +Q). Given −(P +Q) and the requirement three points on a line sum to the
identity O, since O and −(P +Q) are already on a vertical line, we take the guaranteed
third point on this vertical line to be (P +Q).

Figure 2.5: Point Multiplication

We handle the case of adding a point to itself by replacing the line through P and Q with
the tangent line at P for the first step of addition. Having done so, we can multiply any

8



2.2 From Integrals to E/C

point by any integer value, since we can repeatedly add it to itself as well as always add
its inverse to itself. To construct the inverse of a point P we take the line through O and
P to find the third point −P .

We will later find that elliptic curve point addition defines a group operation. However,
in following the historical timeline we will take a short trip through calculus and complex
analysis before returning to the group structure of elliptic curves.

2.2 From Integrals to E/C

Elliptic curves arise in diverse situations such as solving pendulum integral equations
or considering the topological manifolds with one hole. The seemingly disproportionate
number of contexts in which elliptic curves appear is in part what gives rise to their
arithmetic’s frequent appearance throughout diverse modern subjects including cryptog-
raphy, integer factorization, string theory, and more. The story of how elliptic curves
came to be is rooted, perhaps surprisingly, in complex analysis. We begin this section
with a particular set of integrals, the elliptic integrals, and end with the parametrization
of the elliptic functions, a family of complex functions through which the correspondence
between embeddings of the torus into the complex projective plane and complex elliptic
curves is established. The elliptic integrals are integrals with integrands given as partic-
ular rational polynomials of an argument t and the square root of another degree three
or four polynomial,

√
P (t). Interest in elliptic integrals comes not from their individual

evaluation, but rather from how the evaluation of an elliptic integral at varying upper
bounds is governed by an algebraic addition law. Elliptic integrals are then inverted to
form the elliptic functions, and through elliptic functions we may begin to understand
the origins of the study of complex elliptic curves. Through Weierstraß work on elliptic
functions and Riemann’s introduction of surfaces to the theory of complex analysis, the
connection between elliptic curves and a new subject, algebraic geometry, is born.

2.2.1 Ellip c Integrals

Elliptic integrals, in their modern definition, are taken to be integrals of the form

x∫
0

R(t,
√
P (t)),

where P (t) is a degree three or four polynomial which has no repeated roots. Of course,
this is a modern definition and does not give an inkling to why these should be connected
to elliptic curves. For that, we have to start with the work of Fagnano, Euler, Bernoulli,
and others on specific elliptic integrals. After Newton’s work on gravity questions like the
following were being asked.

9



2 The History of Elliptic Curves

What is the curve with the property that the time taken for a particle to
traverse the curve is proportional to the distance from a fixed point. – Fagnano

Bernoulli called the solution of this problem the “paracentric isochrone”, which is given
by

∫ x

0
1/
√
1− t4 dt.

It is from questions and integrals like from which the first notions behind elliptic integrals
were constructed. Fagnano, Bernoulli, Euler, and others worked on elliptic integrals born
from ideas about pendulums, lemniscates, and elasticity. These integrals which appear
throughout the calculus of many subjects are in part why it is that elliptic curves have
found applications in such a variety of subjects.

It was mathematicians like Euler, Legendre, Abel, and Jacobi who first discovered algebraic
integral addition formulas for elliptic integrals in general. Every year, countless students
encounter an algebraic integral addition formula without recognizing it.

sinu∫
0

dx√
1− x2

+

sin v∫
0

dx√
1− x2

=

sin (u+v)∫
0

dx√
1− x2

This equation has the delightful property that the upper summands, if taken as vari-
ables y = sinu and z = sin v, sum according to the following algebraic integral addition
formula

sin (u+ v) = y
√
1− z2 + z

√
1− y2.

One might ask themselves what functions, similar to the integral functions of their upper
bound used above, satisfy algebraic integral addition formulas? Euler discovered the
addition formula for elliptic integrals of the first kind.

u∫
0

dx√
P (x)

+

v∫
0

dx√
P (x)

=

T (u,v)∫
0

dx√
P (x)

, T (u, v) =
u
√
P (v) + v

√
P (u)

1− k2u2v2

where P (x) = (1− x2)(1− k2x2) for a k such that 0 < k < 1.

Legendre subsequently studied the first, second, and third kinds of elliptic integrals and
their addition formulas.∫

dx√
1− x2

√
1− l2x2

,

∫
x2dx√

1− x2
√
1− l2x2

,

∫
dx

(x− a)
√
1− x2

√
1− l2x2

.

For a light introduction to elliptic integrals, A Brief History of Elliptic Integral Addition
Theorems [Bar09] and The Lemniscate and Fagnano’s Contributions to Elliptic Integrals
[Ayo84] are wonderful historical and technical narratives of beautiful born out of early
integral calculus.
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2.2 From Integrals to E/C

2.2.2 Ellip c Func ons

The elliptic functions were discovered to have a unifying feature: double periodicity. Liken-
ing the elliptic integrals to trigonometric integrals, the inversion relationship given by

ω(u) =

u∫
0

dx√
1− x2

, sin(ω(u)) = u

motivated Abel, Jacobi, and others to consider the functions defined by similar relation-
ships

ω(ϕ) =

ϕ∫
0

dt√
1− k2 sin2 t

, sn (ω(ϕ)) = sinϕ,

cn (ω(ϕ)) = cosϕ, dn (ω(ϕ)) =

√
1− k2 sin2 ϕ.

These are our first examples of elliptic functions, which are now defined as the inverse
functions of elliptic integrals. These functions not only extend to complex functions, but
also have algebraic addition formulas such as

sn(ω + η) =
sn ω cn η dn η + sn η cn ω dn ω

1− k2 sn2ω sn2η
.

Stillwell also tells the story of elliptic functions in a chapter of his Mathematics and its
History [Sti10] Lang’s book on Elliptic Functions is an advanced reference [Lan87].

2.2.3 Weierstraß’ ℘

Four-torsion points of C/Λ Weierestraß’ stylized p A complex graph of ℘(z)

Figure 2.6: Weierstraß’ Elliptic ℘ Function
images above from Wikimedia Commons.
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2 The History of Elliptic Curves

Before we may begin with Weierstraß’ theory, we will need lattices. Here, lattices will be
denoted Λ and are all the integer coefficient linear combinations of ω1 and ω2 for some ω1

and ω2 which cannot be expressed as R-multiples of one another, i.e. ω1 ̸= cω2∀c ∈ R.

Λ = Zω1 + Zω2 = {aω1 + bω2 | a, b ∈ Z}.

Next, we define two constants associated to a lattice, g2 and g3, constructed from the
Eisenstein series which Weierstraß used to define his ℘ function. Here, lattices will be
denoted Λ and are all the integer coefficient linear combinations of ω1 and ω2 for some ω1

and ω2 which do not divide one another.

g2(ω1, ω2) = 60
∑

(m,n) ̸=(0,0)

(mω1+nω2)
−4 and g3(ω1, ω2) = 140

∑
(m,n) ̸=(0,0)

(mω1+nω2)
−6

Often we normalize lattices in the complex plane such that the generating set is {1, ω2/ω1}
when ω1 is not already 1. With the definition for Eisenstein series G2k(ω1, ω2) as functions
of ω1 and ω2 already used above in the definitions of g2 and g3, here the definition in a
single variable τ from the upper half plane is given as a sum over nonzero integer pairs.

G2k(τ) =
∑

(m,n)∈Z×Z×

1

(m+ nτ)2k
.

For Weierstraß’ theory, the foundation of elliptic functions comes from the following func-
tions’ relationship.

℘−1(z, g2, g3) =

z∫
∞

dt√
4t3 − g2t− g3

,

℘(z, ω1, ω3) =
1

z2
+

∑
n2+m2 ̸=0

1

(z +mω1 + nω2)2
− 1

(mω1 + nω2)2
,

The sum in the definition of ℘ is over n and m integers and ℘ is defined for z ∈ R and 4z3−
g2z− g3 > 0. While this inverse relationship holds for z ∈ R, ℘ can be taken as a complex
function dependent on z, ω1, ω2 ∈ C, where ω1 and ω2 are the periods of each of the two
distinct directions in the complex plane for which the first integral is periodic.

By construction, ℘ and its derivative ℘′ are themselves elliptic functions. However, they
are very special elliptic functions. Weierstraß showed that all elliptic functions could be
expressed as complex rational functions of ℘ and its derivative. Further, the ℘ function
satisfied the following differential equation.

℘′(z)2 = 4℘(z)3 − g2℘− g3.

12



2.2 From Integrals to E/C

To exactly classify the elliptic functions, we need to know about meromorphicity, the
condition that a function of complex arguments have only removable singularities and
otherwise derivatives exist everywhere. Elliptic functions are are in fact equivalent to
complex elliptic curves. They were first discovered as the the doubly periodic meromorphic
functions, but were then parametrized by the Weierstraß ℘ function and its derivative,
satisfying the given differential equation. Through this last step, the new equivalence
between equations of the form y2 = x3 + ax + b and the field of meromorphic functions
doubly periodic with respect to a particular lattice is established.

One reference which tells the story from elliptic integrals to the parametrization of elliptic
functions is Hancock’s Lectures on the theory of elliptic functions [Han58].

2.2.4 E/C as a Torus

{Elliptic Curves over C} ∼= {C/Λ}

When considering the image of a complex argument z under the map ℘ for some lattice,
z’s image is doubly periodic. ℘(z + ω1) = ℘(z + ω2) = ℘(z). Edges of the lattice are
identified and the topology of a torus is the result. That is, ℘ is perfectly well defined as
a function ℘ : C/Λ → C, rather than as a function on the entire complex plane.

For any curve over a base field with specified characteristic, any elliptic curve can be
parametrized into a normal form with a formula given as follows and only a single point
where z = 0, given as the single point at infinity O = (0 : 1 : 0). The first of these normal
forms is called a Weierstraß equation.

E : y2 = x3 + ax+ b for fields of characteristic not 2 or 3.

E : y2 + a1xy + a3y
2 = x3 + a2x

2 + a4x+ a6 for fields of characteristic = 2,3

A field having characteristic k simply refers to the field having k as the smallest integer
which satisfies 1 · k = 0. In a finite field Fq the characteristic of the group is the prime p
such that q = pn. If no such integer exists, we say that a field has characteristic 0.

With Weierstraß parametrization for elliptic curves and elliptic functions in hand, the
elliptic curves over C had been parametrized through the ℘ function’s differential equation,
which is in turn parametrized with respect to a torus given as Λ = Zω1 × Zω2. This not
only introduces the geometric notion of arithmetic genus, the number of holes in the
complex solution space to elliptic curves, but establishes an equivalence between complex
elliptic curves and genus one curves.

Having the normal forms in hand, we can define the discriminant ∆ and j-invariant, which
respectively measure whether or not a curve is singular and the isomorphism class of an
elliptic curve in an algebraically closed field.

13



2 The History of Elliptic Curves

When an elliptic curve can be made isomorphic to one of the form E : y2 = x3 + ax + b
we construct the ∆ discriminant and j-invariant like so

∆(E) = 4a3 + 27b2, j(E) =
1728(4a3)

4a3 + 27b2
.

∆(E) = 0 implies that E is singular, and j(E) = j(E ′) if and only if E and E ′ are
isomorphic over the algebraic closure of k, the base field for the elliptic curve.

The discriminant is a quantity we can associate to a polynomial which measures when
the roots of the polynomial are equal, and in the more general definition can be expressed
including a Πi̸=j(ri − rj) term, where the product is over all roots in the algebraic closure
of the base field. If two or more roots x3 + ax + b are equal in the algebraic closure,
then both this product expression and the discriminant formula taken as 4a3 − 27b2 both
become zero, and we know that the curve y2 = x3 + ax+ b is singular.

The discriminant and j-invariant can also be defined for elliptic curves over fields of ar-
bitrary characteristic, and while there are certainly ideas worth considering in how these
formulas came to be, we will refer the reader with continued interest in these functions to
[Sil86]

The Weierstraß equation, the discriminant, and the j-function associated to elliptic curves
required the development of a thorough understanding of elliptic integrals, advancements
in complex analysis, and now connections through the theory of Riemann surfaces to
topology. The early appearance of elliptic integrals and elliptic functions in the theory of
analysis are just the beginning of elliptic curves and analysis’ relationship. However, mov-
ing into late 19th century, Galois’ work had been posthumously published and algebraic
headway was imminent.

2.3 Ra onal Ellip c Curves E/Q

E(Q) ∼= Torsion × Zr

The rational points of elliptic curves, while a subject of early fascination, have only just
begun to be understood. Their structure as a group is an early 20th century result, and
yet we still do not know how large the infinite structure of a rational elliptic curve could
be. Faltings showed that curves of genus one, equivalently the elliptic curves, were distinct
from curves of all other genus in that they could have either finitely or infinitely many
rational points. This section introduces three major theorems exposing the subtlty of the
structure of the rational points of elliptic curves.

Fermat’s method of descent, a theme to both the Mordel-Weil Theorem and Fermat’s
work, is presented next. Before modern investigation of the rational points of elliptic

14



2.3 Rational Elliptic Curves E/Q

curves, ideas surrounding Fermat’s descent inspired intrigue in the subject and which
began to shed light on the subtlty of elliptic curves’ structure. There are few equations
which inspire more intrigue than the Fermat curves, and their connection to elliptic curves
through both the Mordell-Weil Theorem and Wiles’ proof of Fermat’s Last Theorem is
another feature of the subject at which we may marvel.

Definition. A group is a set G with a binary operation · with the following properties

i. There exists an identity, 1, such that 1 · g = g · 1 = g for every g in G.

ii. Inverses exist for every element such that g−1g = gg−1 = 1 for every g in G.

iii. The group operation is associative such that (a · b) · c = a · (b · c) for any a, b, c ∈ G.

iv. The group is closed under · such that a · b ∈ G for all a, b ∈ G.

v. A group is abelian if a · b = b · a for all a, b ∈ G.

vi. A group is finitely generated if for some finite subset S ⊆ G every element in G can
be written as a word in the elements of S.

While group structure is a natural notion under a modern algebraic inspection of the
results of Bezout’s theorem in the context of elliptic curves, the language of groups is a
relatively recent invention, and not something known to mathematicians in the 17th and
18th centuries. The associativity property required for a group, namely that (a+ (b+ c))
and ((a+b)+c) are equal for any choice of a, b, c in the group, was not shown for points on
elliptic curves until 1886 when the Cayley–Bacharach theorem was proven, which states
that two projective degree three cubics which intersect in 8 points also intersect at a 9th
point [EGH96].

The conditions of a group being finitely generated and abelian are quite strong: the
fundamental theorem of finitely generated abelian groups states that such groups are
direct products of cyclic groups, including Z/nZ for any n ∈ Z, and Z itself. Such groups
are composed of finite cyclic subgroups, together called the torsion subgroup, and a finite
number of infinite cyclic subgroups, together called the free part.

2.3.1 Fermat’s Descent

Fermat’s Last Theorem can be interpreted as the statement that neither

Fn : xn + yn = zn in projective coordinates, nor

Fn : xn + yn = 1 in affine coordinates

have nontrivial solutions (x, y > 0) for n ≥ 3. Fermat’s conjecture and his claim of proof
in the margin of his copy of Diophantus’ Arithmetica is a part one of the most famous
stories in mathematics, but a less well known part of this story is that he truly had proven
his conjecture for F4, also in the margin of Arithmetica.

15



2 The History of Elliptic Curves

First, we will need Diophantus’ parametrization of all rational primitive Pythagorean
triples.

Definition. A triple (a, b, c) is a primitive Pythagorean triple if a2 + b2 = c2 and the
greatest common divisor of a, b, and c is 1.

Theorem. Let m and n be two relatively prime natural numbers such that m − n is
positive and odd. Then (m2 − n2, 2mn, n2 +m2) is a primitive Pythagorean triple, and
every primitive Pythagorean triple can be constructed this way.

Now we may easy demonstrate Fermat’s Last Theorem for F4 using a simple contradiction
argument.

Theorem. F4 has no nontrivial solutions.

Proof. If x4 + y4 = z4 had solutions, then x4 + y4 = z2 has solutions. If x4 + y4 = z2 had
solutions with x, y positive integers, then there would be a minimal solution with z minimal
(x, y, z) from which we will be able to find a secondary triple (a2, b2, c) contradicting
the minimality assumption describing our original solution. First, we apply Diophantus’
parametrization of primitive Pythagorean triples to (x, y, z) to yield

x2 = m2 − n2, y2 = 2mn, z = m2 + n2.

This forms another primitive Pythagorean triple, given by (x, n,m). Again, we can use
Diophantus’ parametrization to find

x = t2 − s2, n = 2ts, m = t2 + s2.

In order for this triple and the original triple to be primitive, s and t must have no common
factor, and so we can deduce from y2 = 2mn = 4st(s2 + t2) that

s = a2, t = b2, c2 = t2 + s2 for some c

Finally, we may compute the following

z = m2 + n2 = (t2 + s2)2 + 4t2s2 = (a4 + b4) + 4a4b4 > (a4 + b4)2 = c2.

With this inequality, we establish that the triple (a2, b2, c) contradicts the minimality
assumption made with respect to (x, y, z).

This proof comes from a section in the 6th chapter on a Proof of Mordell’s Finite Gener-
ation Theorem Husemöller’s book Elliptic Curves [Hus04].

2.3.2 Mordell-Weil Theorem

E(Q) ∼= E(Q)Tors︸ ︷︷ ︸
a finite subgroup

+ Z + Z + · · · + Z︸ ︷︷ ︸
r<∞ times
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2.3 Rational Elliptic Curves E/Q

Figure 2.7: An Elliptic Curve with 4
Free Generators

In 1922, Louis Mordell proved that an the group
of rational points on an elliptic curve over Q is a
finitely generated abelian group.

The proof of this is dependent upon four lemmas.
To explain the meaning of these lemmas, we re-
quire the notion of a height of a point h(P ), which
is taken as the logarithm of the greater of the ab-
solute values of the numerator and denominator of
the x coordinate, such that if P (x, y) = (m/n, y)
then h(P ) = log(max(|m|, |n|)). The first lemma is a
statement that the elliptic curves points which have
height under some bound is a finite set. The sec-
ond lemma states that point addition yields a point
with height bounded above in a way dependent on
the original points. The third lemma states that
point doubling yields a point of four times the height, with some adjustment. The fourth
is a weak finite basis theorem stating that the points which are doubles of others, 2E(Q),
make up a subgroup with finite index in E(Q). Finally, taking the last and prior lemmas
together, we are able to argue that we may always make the descent to a set from which
all other rational points of an elliptic curve can be generated. The proof of this is subtle,
algebraic, and motivated not least by Fermat’s descent. For the details, we refer readers
to Silverman and Tate’s Rational Points on Elliptic Curves [ST15] and Silverman’s The
Arithmetic of Elliptic Curves [Sil86].

Lemma 1. Given an elliptic curve E, for every real number M the set

{P ∈ E(Q) : h(P ) ≤ M} is finite.

Lemma 2. Given P0 a point in E(Q), there is a constant such that

h(P + P0) ≤ 2h(P ) + κ0 for all P ∈ E(Q).

Lemma 3. There is a constant κ, depending on E, such that

h(2P ) ≥ 4h(P )− κ for all P ∈ E(Q).

Lemma 4. The index [E(Q) : 2E(Q)] is finite.

The Mordell-Weil theorem was originally posed by Poincaré in 1908, and later generalized
by André Weil in his dissertation to higher genus curves to demonstrate that an abelian
variety over a number field is a finitely generated abelian group.
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2 The History of Elliptic Curves

2.3.3 Nagell-Lutz Theorem

Given a rational elliptic curve E and its discriminant ∆(E), if P = (x, y) is a torsion
point, i.e. a point of finite order such that nP = O for some integer n < ∞, then x and y
are integers and either y = 0 or y2 divides ∆(E).

It is remarkable that given an abstract point assumed to be torsion, we know that it will
have integer coordinates. However, the converse is not true. Given a point with integer
coordinates, it need not be a torsion point.

2.3.4 Mazur’s Theorem

Figure 2.8: An Elliptic Curve with
E(Q)Tors ∼= Z/10Z

Mazur’s Theorem states that for any rational ellip-
tic curve, its torsion subgroup is one of the fifteen
following groups.

Z/nZ, where 1 ≤ n ≤ 10 or n = 12, or

Z/2Z× Z/nZ, where n ∈ {2, 4, 6, 8}.

While the torsion part of elliptic curves is rel-
atively well understood, the free infinite part of
some rank, that part which is isomorphic to Zr ∼=
E(Q)/E(Q)Tors, remains mysterious. It is a topic
of many conjectures, which investigate ideas includ-
ing the the distributions of ranks r, the maximum
possible value of r, and other seemingly simple yet unanswered questions.

Brown and Myers article Elliptic curves from Mordell to Diophantus and back is certainly
recommended reading for an introduction to the algebraic structure of rational elliptic
curves [BM02]. Additionally, Silverberg’s Ranks Cheat Sheet is a brief and dense intro-
duction to both known theory and unproven conjectures surrounding the rank of rational
elliptic curves [Sil13].

2.4 Ellip c Curves over Finite Fields E/Fq

While elliptic curves’ rational points may still yet be mysterious, tremendous work and
progress have resulted from the investigation of elliptic curves over finite fields. There
are strict bounds known with regards to the size of finite field elliptic curves. L-series
are one way mathematicians try to understand the size of embeddings of an elliptic curve
into all the finite fields, and the relationship between L-functions and the algebraic rank
of an elliptic curve remains one of the most significant problems in mathematics. They
are not just theoretically fascinating, but have found applications in cryptography and
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2.4 Elliptic Curves over Finite Fields E/Fq

integer factorization. In the early 21st century, finite field elliptic curve based cryptog-
raphy is everywhere around us. Finite field elliptic curves certainly have been subject to
increadible headway in the past century. Nonetheless, they will continue to be the subject
of mathematical intrigue for a long time to come.

The order of any finite field Fq is a positive integer power n of some prime number p such
that q = pn. While each of them may be finite, what they make up for in size is number:
since there are infinitely many primes there are infinitely many finite fields for which we
can consider elliptic curves.

Definition. A finite field elliptic curve E/Fq is a degree three plane curve with ∆(E) ̸=
0 in Fq. We denote the number of points on a finite field elliptic curve by |E(Fq)|.

2.4.1 Hasse’s Bound

It is incredible how well we can explain the bounding on the size of finite field elliptic
curves. For any elliptic curve, the number of points in a finite field with q elements is
approximately q + 1 within an error of ±2

√
q.

|E(Fq)| − (q + 1) ≤ 2
√
q

(p, |E(Fp|) (p, |E(Fp)| − p− 1)

Figure 2.9: A graph of E(Fp) and its normalization
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2 The History of Elliptic Curves

2.4.2 Sato-Tate Theorem

Figure 2.10: A Sato-Tate Distribution for y2 = x3 + x+ 1

The above plot was produced as part of Kedlaya and Sutherland’s work on Computing L-
series of Hyperelliptic Curves and its associated software package smalljac [KS08]. Notably
the odd statistical moments are converging to the Catalan numbers, a combinatorially
derived sequence which seems a long way from home here.

It was conjectured in the early 60s that the distribution of the size of certain finite field
elliptic curves normalized by the size of the field + 1 were distributed in a very particular,
nearly semicircular, way. The proof of the Sato-Tate theorem was recently announced
in 2006. For an introduction to this subject, Mazur’s paper Finding Meaning In Error
Terms is a friendly starting point [Maz08]. First, we construct the error term from the
normalization.

ap = p+ 1−Np where Np = |E(Fp)|

Then define θp to solve

p+ 1−Np = 2
√
p cos θp.

If E be an elliptic curve without complex multiplication (a property an elliptic curve
has when it has an endomorphism ring larger than the integers), then for every two real
numbers α and β for which 0 ≤ α < β ≤ π,

lim
N→∞

#{p ≤ N : α ≤ θp ≤ β}
#{p ≤ N}

=
2

π

β∫
α

sin2 θdθ.

This yields the semicircle in the limit, illustrated in the plot above.

20

https://math.mit.edu/~drew/g1_D1_a1f.gif


2.4 Elliptic Curves over Finite Fields E/Fq

2.4.3 The Birch and Swinnerton-Dyer Conjecture

While the modern formulation of the Birch and Swinnerton-Dyer Conjecture is much more
technical than the details presented here, it is born out of a simpler conjecture relating the
analytic rank of an elliptic curve’s L-series to its algebraic rank, denoted before as r.

An elliptic curve’s L-series is given in terms of its Weierstraß equation and information
about the reduction of the curve at each prime. Given an elliptic curve, we may find
that the discriminant is nonzero in Q but zero in a finite field. An elliptic curve has
good reduction at p if its reduction into Fp is a nonsingular curve. If the reduction has
a cusp, we call this additive reduction, and likewise for a node we call this multiplicative
reduction. If a curve has multiplicative reduction at p, and if the slopes of the tangent
lines to the node in the algebraic closure are also in Fp we call this split multiplicative
reduction, and non-split otherwise. First, we define the local part of the L-series at p, and
then we define an elliptic curve’s L-series as an infinite product of these parts.

Lp(T ) =


1− apT + pT 2 if E has good reduction at p,
1− T if E has split multiplicative reduction at p,
1 + T if E has non-split multiplicative reduction at p,
1 if E has additive reduction at p.

L(E, s) =
∏
p

1

Lp(p−s)
,

At the heart of the Birch and Swinnerton-Dyer conjecture is the idea that an elliptic curve’s
analytic rank, the order of vanishing at one for its L-function, is equal to the algebraic
rank, the degree of the infinite cyclic part. Similar to Riemann’s famous zeta function,
the subject of another Millenium Prize Problem, the L-series of an elliptic curve has an
analytic continuation to the entire complex plane. It is this analytically continued L-series
which not only is the subject of Birch and Swinnerton-Dyer’s conjecture, but the subject
of attention considered in conjectures such as the parity and root-number conjectures.

2.4.4 Lenstra’s Factoriza on Algorithm

Lenstra’s factorization algorithm is a sub-exponential algorithm for integer factorization
and while it is the third fastest (behind the multiple polynomial quadratic sieve and
general number field sieve methods) for general purpose factoring, it is the fastest method
for factoring out prime factors less than 20 to 25 digits. Its performance for small integers
is not nearly as competitive as using a database lookup, but for many integers Lenstra’s
algorithm is presently the fastest known option. Pomerance’s paper A Tale of Two Sieves
in the Notices of the AMS is a historical narrative of progress in integer factorization
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2 The History of Elliptic Curves

methods [Pom96]. Naturally since integer factorization is so closely related to primality,
it is a subject of great interest to number theorists and resources like Prime Numbers, A
Computational Perspective by Crandall and Pomerance exist [CP05]. Integer factorization
is one of many subjects encompassed within computational number theory.

Lenstra’s factorization algorithm likens finding divisors of a number n within the group
structure of Z/nZ as multiplicatively non-invertible elements to finding points on an elliptic
curve modulo n for which addition fails to be possible. Addition can fail to be possible
when the slope of the line intersecting two points contains a non-invertible element modulo
n in the denominator. For the details and a more careful explanation, Section 4.4 in [ST15]
exposits the subject well. With slight alteration, the following table describing Lenstra’s
algorithm also comes from Silverman and Tate.

0. Let n ≥ 2 be a composite integer to be factored.
1. Check that gcd(n, 6) = 1 and that n is not a perfect power.
2. Choose random integers b, x1, and y1 modulo n.
3. Set P = (x1, y1) and c = y21 − x3

1 − bx1 (mod n).
4. Let E be the elliptic curve E : y2 = x3 + bx+ c.
5. Repeat Step 6 through 9 for d = 2, 3, 4, . . . up to a specified bound.
6. Compute Q = dP (mod n) and set P = Q.
7. If the computation of Step 6 fails then we have found a divisor,

g = gcd(x(Q)− x(P ), n).
8. If g < n, then we find g is a factor of n.
9. If g = n, go back to step 2 and pick a different curve and point.

10. If all factors have not yet been found, go back to step 2 and try again.

Table 2.2: Lenstra’s Factorization Algorithm

2.4.5 Ellip c Curve Cryptography

The discrete logarithm problem is one which is hard, and that is why it is found in the
foundations of RSA cryptography. The guaranteed difficulty of this problem and related
ones is what is used to ensure the security of encrypted communications in many modern
and recent cryptography schemes.

Definition. The Discrete Logarithm Problem. Given b (mod p) and bn (mod p), find
n. Equivalently, compute logb(a) for a, b ∈ Z/pZ.

To find such a number, some arithmetic must be done, and thus given b it is measurably
difficult to back out its factors.

Elliptic curve cryptography is based on a similar idea.

Definition. Elliptic Curve Discrete Logarithm Problem. Given a point P and
another point Q on an elliptic curve, find n such that nQ = P .
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2.5 Modular Forms

While elliptic curves may have been the subject of mathematicians’ intrigue for centuries,
their utility has only recently become widely available through algorithms implemented
at massive scale. Koblitz and Miller suggested elliptic curve cryptography in 1985, and
since 2004 to 2005 elliptic curve crypotography has become a popular standard.

2.5 Modular Forms

Modular forms capture endless attention from number theorists. They are not only con-
sidered a beautiful subject, but also one which connects areas and subjects within math-
ematics in unanticipated ways. Connections which include everything from Diophantine
equations, complex analysis, representation theory, class field theory, number theory, and
more appear simultaneously within the theory of modular forms. The relationship be-
tween elliptic curves and modular forms is one of many profound insights in mathematics
into just how interconnected the abstract world is.

The Eisenstein series G2k(τ), j-function, and the discriminant ∆ previously introduced
are examples of modular forms. Modular forms are complex functions satisfying certain
symmetry requirements under the action of a particular matrix group. To define a modular
form, we again will need a concept from complex analysis: holomorphy. A function is
holomorphic if its derivative exists everywhere in the complex plane.

Definition. A modular form of weight k for the modular group

SL(2,Z) =
{(

a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
is a complex-valued function f on the upper half-plane H = {z ∈ C, Im(z) > 0}, satisfying
the following three conditions:

• f is a holomorphic function on H.

• For any z ∈ H and any matrix in SL(2,Z), we have: f
(
az+b
cz+d

)
= (cz + d)kf(z)

• f is required to be holomorphic as z → i∞.

The discriminant and j-invariant may also be expressed as follows.

∆(z) = g32 − 27g23, j(z) = 1728
g32
∆
,

The Eisenstein series, ∆, and the j-invariant are taken here to be functions of the complex
upper half plane in a single argument z ∈ H, just as if the lattice had been normalized to
have 1 as a generating number.

Ramanujan first saw that the discriminant ∆ should be expressed as an infinite product
in terms of q = e2πiτ . The discriminant can be rewritten as a product expression, and
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2 The History of Elliptic Curves

Ramanujan used this to define the τ function as the nth coefficient in the Fourier series
expansion of ∆.

∆(τ) = (2π)12q
∞∏
r=1

(1− qr)24.

∆(τ) = (2π)12
∞∑
n=1

τ(n)qn.

The following are three famous conjectures by Ramanujan on the properties of τ :

• τ(mn) = τ(m)τ(n) if gcd(m,n) = 1.

• τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1) for p prime and r > 0.

• |τ(p)| ≤ 2p11/2 for all primes p.

Each these were later proven. The third required Deligne’s proof of the Riemann Hypoth-
esis for abelian varieties over finite fields, and in particular elliptic curves over finite fields.
The Riemann Hypothesis for abelian varieties over finite fields is one part of the Weil
Conjectures, which included the conjectures that local zeta functions should be rational
functions, should satisfy a functional equation, and should have zeroes lying on a critical
line.

For further reference on modular forms, the textbooks Introduction to Elliptic Curves and
Modular Forms by Koblitz and A first course in Modular Forms by Diamond and Shurman
are both excellent resources.

2.5.1 Modularity Theorem

Undoubtedly, Fermat’s Last Theorem is one of the most famous stories known to non-
mathematicians and mathematicians alike, yet its proof’s impact extends far beyond Fer-
mat’s family of curves. While Andrew Wiles and others’ work to prove Fermat’s conjecture
contains a large number of details which are specific techniques not easily applied to similar
problems, the Modularity Theorem is a correspondence established between rational ellip-
tic curves and an incredibly distant seeming subject, modular forms, which will continue
to shape research in elliptic curves for many years to come.

2.5.2 MacDonald’s Equa on

If taking the author’s word for the beauty of modular forms sits uneasily with the reader,
I offer the following formula as evidence. This formula is due to MacDonald and was
included in a lecture by Dyson in 1972 titled Missed Opportunities in which Ramanujan’s
τ function is expressed in a most beautiful way.
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τ(n) =
∑ (a− b)(a− c)(a− d)(a− e)(b− c)(b− d)(b− e)(c− e)(d− e)

1!2!3!4!
,

summed over all sets of integers a, b, c, d, e, with

a, b, c, d, e = 1, 2, 3, 4, 5 (mod 5),

a+ b+ c+ d+ e = 0,

a2 + b2 + c2 + d2 + e2 = 10n.

2.6 On the Present

As algebraic geometry, number theory, and all other subjects of mathematics have been
conjured into their intricate modern forms, so too have elliptic curves become an intricate
and subtle subject. They are connected to analysis, algebra, topology, and number theory.
Their properties, group law and others, appear behind the scenes throughout society,
not only in the calculus students’ homework problems, but in the security of modern
communication. Many problems, conjectures, and questions remain to be solved, but the
utility, subtlty, and significance of elliptic curves have been firmly established and are here
to stay.
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3 Introduc on to Ellip c Curves in
SageMath

I would suggest that anybody interested in computational mathematics try out SageMath.
The proximity of the language to Python makes it easy to pick up, and there are wonderful
libraries like numpy, pandas, and matplotlib which make working with data in SageMath a
delight. To get help in Sage, I use ?, help, dir, and the inspect module’s getsource function.
For example, EllipticCurve? will return Sage documentation pages for the elliptic curve
constructor. Help returns Python object documentation, dir returns a Python object’s
list of methods, and getsource let’s you take a look at a Python method’s source code.

We can use the EllipticCurve constructor in a
variety of ways. Using LMFDB or Cremona's labels,
through a-invariants (long or short), polynomially,
or by the j-invariant are all options.
E = EllipticCurve('496a1')
E = EllipticCurve([0, 0, 0, 1, 1])
E = EllipticCurve([1,1])
var('x y'); E = EllipticCurve(y^2 == x^3 + x + 1)
E = EllipticCurve_from_j(6912/31)
Elliptic Curve defined by y^2 = x^3 - x
over Rational Field

Point arithmetic works great!
E(1,0) + E(2,2)
(1 : -1 : 1)
2*E(2,2)
(21/25 : -56/125 : 1)

Any commutative ring may be used to construct
elliptic curves.
R.<a> = PolynomialRing(QQ, 'a')
EllipticCurve(R, [0,0,1,a,0])
Elliptic Curve defined by y^2 + y = x^3 + a*x over
Univariate Polynomial Ring in a over Rational Field

E = EllipticCurve(FiniteField(3), [1,1])
Elliptic Curve defined by y^2 = x^3 + x + 1
over Finite Field of size 3

E.change_ring(QQ)
Elliptic Curve defined by y^2 = x^3 + x + 1 over
Rational Field

EllipticCurve(pAdicField(p=5, prec=20), [1,-1])
Elliptic Curve defined by y^2 = x^3 +
(1+O(5^20))*x + (1+O(5^20)) over 5-adic Field
with capped relative precision 20

EllipticCurve(QQ, [1,1]).reduction(3)
Elliptic Curve defined by y^2 = x^3 + x + 1 over
Finite Field of size 3

Plotting E over R, Q, and Fp is no problem.
E.plot()

We can easily compute many features of any E/Q
E.ainvs() # a-invariants
E.analytic_rank() # ords=1L(E, s)
E.conductor() # conductor of E
E.discriminant() # discriminant ∆
E.gens() # free generators of E(Q)
E.has_cm() # check for complex multiplication
E.j_invariant() # j-invariant
E.lseries() # L(E, s)
E.Np(p) # |E(Fp)| for prime argument
E.rank() # rank of E
E.torsion_points() # finite order points
E.integral_points() # integer coordinate points

We can get specifically structured curves from
sage.schemes.elliptic_curves.ec_database
elliptic_curves.rank(n=3, rank=3, tors=2, labels=True)
['59450i1', '59450i2', '61376c1']

Using the @parallel decorator, we convert a normal
function into one which runs on lists of input in
parallel. The function returns a generator,
which when iterated on returns the values as they
are computed in parallel, with their arguments
and results listed.
@parallel
def parallel_Np(E,p): return E.Np(p)
l = zip(elliptic_curves.rank(0), primes_first_n(10))
for answer in parallel_Np(l): print answer
(((Elliptic Curve defined by y^2 + y = x^3 - x^2 -
7820*x -263580 over Rational Field, 3), {}), 5)
(((Elliptic Curve defined by y^2 + y = x^3 - x^2 -
10*x - 20 over Rational Field, 2), {}), 5)
(((Elliptic Curve defined by y^2 + y = x^3 - x^2
over Rational Field, 5), {}), 5)
...

26



4 A Numerical Inves ga on

All mathematicians must compute data. By computing data we verify hypotheses, test
conjectures, and observe new phenomena. Computation is an integral part of science, and
for a mathematician in the 21st century there are few better tools available in the aid
of computation than the modern computer. Through use of programming languages to
construct, test, and analyze entire experiments, and supercomputers on which to deploy
these experiments, the scale at which we may view the phenomena in the world of numbers
is made orders of magnitude larger. In the next chapter, I would like to invite the reader
on a journey through data. In particular, I am interested in understanding the relationship
between the infinite rational points of elliptic curves and their reduction into finite field
elliptic curves.

4.1 Reducing E(Q) into E(Fp)

Let E/Q be an elliptic curve with positive rank r, such that the free part of E is isomorphic
to Zr. Each of the infinitely many points is a rational point, each of which we could
denote (m1/n1,m2/n2). Whenever n1 and n2 are not divisible by p for some prime p,
then we may construct n−1

1 and n−1
2 within Fp. Having done so, we may then replace

division with multiplication by the inverse such that (m1/n1,m2/n2) reduces into Fp ×Fp

as (m1n
−1
1 ,m1n

−1
1 ). It is from this sense in which we might describe E(Q) reduced into

E(Fp), denoted here E(Q) ↪→ E(Fp). Computationally, we will take specifically the free-
generators for E(Q), reduce them individually into E(Fp), and see what subgroup they
construct. When E has positive rank this is a reduction of an infinite group into a finite
one.

While this behavior might be highly erratic varying from prime to prime, it is standard in
number theory into look to the limiting behavior of a distribution when the original data
is seemingly meaningless. While my notion of interest is the ratio of the reduced points to
E(Fp), the more traditional quantity is algebraic index where [E(Fp) : S] = |E(Fp)|/|S|
for any subgroup S of E(Fp). Consider the following function, and what it might do in
the limit.

FE(p) =

∑
primes p |E(Fp)|∑

primes p |E(Q) reduced into E(Fp)|
.
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4 A Numerical Investigation

Figure 4.1: The graph of (p, [E(Fp) : E(Q) ↪→ E(Fp)]) for 37a
a rank one curve given by y2 + y = x3 − x.

Figure 4.2: The graph of (p, FE(p)) for E = EllipticCurve('37a').
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4.1 Reducing E(Q) into E(Fp)

Figure 4.3: Graphs of (p, FE(p)) for 50 curves, 10 of each rank

rank 1 rank 2 rank 3

rank 4 rank 5

Blue denotes rank 1, purple rank 2, orange rank 3, green rank 4, and red rank 5. While I
am not surprised to see that when there are more generators that the subgroup becomes
larger, I am surprised that even for rank 4 and rank 5 the data does not appear convergent.
Rather, as the prime becomes larger we see the ratio shift away from one in favor of jumping
up in quantity, where there must have been at least one point in E(Fp) not in the reduction
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4 A Numerical Investigation

of E(Q) ↪→ E(Fp) at certain primes. While rank 2, 3, 4, and 5 appear to each occupy a
fairly small range of values, within these ranges it does not appear that one quantity is
strongly preferred over others. It should be noted that the individual plots are each on
their own scale, such that rank 3, 4, and 5 have magnified y-axes to see the detail of their
behavior. It certainly seems difficult to reason from these plot if this ratio converges for
any elliptic curves in the limit.

It appears that generally E(Q) ↪→ E(Fp) often has index one until a certain prime where
it skips. The horizontal lines at one indicate that the order of the subgroup of E(Fp)
generated by the free generators of E(Q) is and has been equal to |E(Fp)| for primes less
than or equal to the nth prime. Then, at a particular prime the free-generators fail to
generate the whole finite field elliptic curve, so the accumulation function skips upward.
However, in large rank curves it seems that E(Q) ↪→ E(Fp) and E(Fp) are equal often,
and thus we see a steady decay acting on each of the curves’ accumulation functions after
such a skip.

So, I did the sane thing to do, and I computed the largest data set I could in a few hours
on my computer. Additionally, I inverted the ratio back to my original notion of the ratio
of the number of reduced points from E(Q) to the number of points in E(Fp) so that
the graphs wouldn’t be unbounded. In many of the following graphs, the horizontal axis
denotes the nth prime p.

Figure 4.5: The graph of (n, 1
FE(p)

).
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4.1 Reducing E(Q) into E(Fp)

rank 1 rank 2 rank 3

rank 4 rank 5

Figure 4.6: Accumulation Function 1
FE(p)

separated for each rank

rank 1 rank 2 rank 3

rank 4 rank 5

Figure 4.7: Examples of 1
FE(p)

for one curve of each rank 1-5

I have used 315 curves to make these plots, 100 of ranks 1, 2, 3, and then I used all the rank
4 and rank 5 curves presently in the Sage sage.schemes.elliptic_curves.ec_database.
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4 A Numerical Investigation

Figure 4.8: And then I histogrammed.

Perhaps it is because there are simply more generators for larger rank curves that the value
of peaks descend in order of rank 5 to rank 1. However, besides this simple argument, I
can do little to explain this data. Why is rank 1 trimodal? Why are there so many peaks
for ranks 1 and 2? What governs the decay of these distributions? I do not know.

rank 1 rank 2 rank 3

rank 4 rank 5

Figure 4.9: |E(Fp)|/|E(Q) ↪→ E(Fp)| at the nth prime
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4.1 Reducing E(Q) into E(Fp)

Not making significant progress in understanding the distribution of the accumulation
function, I was driven to find simpler patterns. In the last plots I believe I have been suc-
cessful. Rank 5 in figure 4.9 characterizes the skipping behavior I had noticed previously,
and there are some interesting lower bounds on these graphs for rank 4 and 5. I do not
have any explanation for why rank four E(Q) ↪→ E(Fp) subgroups appear in my data as
a third of the whole group or greater, or similarly why the rank 5 subgroups appear only
as half or the whole. In effort to understand this and find motivation for it, I plotted
|E(Q) ↪→ E(Fp)| for a single curve.

Figure 4.10: |E(Q) ↪→ E(Fp)| for 37a

The thickest large blue band is visually almost exactly the Hasse bound plot in figure
Figure 2.9, and indeed corresponds with when the point (0,−1) on y2 + y = x3 − x
generates all of E(Fp). This is plot is certainly visually striking, but I believe it only tells
me what I already knew: the ratio of rank one curves’ reduced-E(Q) groups’ size to the
corresponding |E(Fp)| value is highly scattered and difficult to predict.

These plots are certainly not completely random, and rank 5 in figure 4.9 exemplifies the
“skipping” behavior I have described. However, more than anything else I have simply
confirmed for myself that understanding the rank of elliptic curves is truly subtle and
hard. At this point, I knew I needed simpler questions if I wanted simpler answers.

There is one feature which particularly stands out to me in my data that I ask the reader
not to forget–the horizontal lines at one present in figures 4.2, 4.5, and 4.9. This is when
reduction of E(Q) is onto E(Fp).
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4 A Numerical Investigation

4.2 Genera ng a Subgroup with (0, 0)

Rank is hard to understand and use experimentally, so we will pivot away from using
it in favor of experiments with less choice involved for the experimenter (such as the
choice of sampling). In an effort to replace the original problem, I now want to measure
⟨P ⟩ ⊆ E(Fp), where P is some point of interest and easier to find than the generators of
E(Q). In response to this, my advisors suggested using the following family with which we
can new define functions at each prime measuring more refined accumulated quantities.

{EA,B : y2 + y = x3 + Ax2 +Bx for A,B ∈ Fp and ∆(EA,B) ̸= 0},

∆(EA,B) = 16A2B2 − 16A3 − 64B3 + 72AB − 27.

Notice conveniently, the reduction of EA,B into Fp always contains the point (0, 0). In
particular, we will define the following functions at each prime number.

F1(p) =
∑

A,B (mod p)

|EA,B(Fp)|,

F2(p) =
∑

A,B (mod p)

|⟨(0, 0) ∈ EA,B(Fp)⟩|,

F3(p) =
∑

A,B (mod p)

[EA,B(Fp) : ⟨(0, 0)⟩],

F4(p) =
∑

A,B (mod p)

1/[EA,B(Fp) : ⟨(0, 0)⟩].

Why is this a suitable refinement of our original question about reducing E(Q)? Because
often enough (0, 0) is one of the free generators of the rational points on an elliptic curve
parametrized by y2 + y = x3 + Ax2 + Bx. This can be verified for any prime (and in
particular p = 17) through the following code snippet.

from itertools import product
for (A,B) in product(range(17), range(17)):

try:
E = EllipticCurve([0,A,1,B,0])
print E.gens()

except:
pass

[]
[(0 : 0 : 1)]
[(2 : 3 : 1)]
[(0 : 0 : 1)]
[(0 : 0 : 1), (1/4 : 5/8 : 1)]
[(0 : 0 : 1), (1 : 2 : 1)]
...

Since there are approximately p + 1 points on any EA,B(Fp), and there are p choices for
each of A and B, we should expect that F1 will grow cubically with p. F2 is bounded above
by F1, and since |⟨(0, 0)⟩| ≥ 1, we can expect it to grow at least as fast as quadratically
with respect to p. F3 and F4 are more subtle, although intimately related to each other
as accumulation functions of each others’ inversed summand.
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4.2 Generating a Subgroup with (0, 0)

Figure 4.11: F1, F2, F3, F4 plotted as functions of nth primes on a loglog plot

F1(p)/p
3 F2(p)/p

3

F2(p)/F1(p)

Figure 4.12: Analysis of F1 and F2 for 100 Primes

35



4 A Numerical Investigation

With figure 4.12, we find that F1(p) ∼ p3, F2(p) ∼ 0.61p3, and F2(p)
F1(p)

∼ 0.61. Continuing
on, we will take a look at F3, and skip over F4 since its information is nearly equivalent.

(a) F3(p) (b) F3(p)/p
2

(c) F3(p)/p
2 on semilogx scale (d) F3(p)

p2 ln p

Figure 4.13: Analyzing F3 for 100 Primes

We expect that F3 cannot possibly grow as fast as p3, since the generated subgroup is
often not the whole group. However, as we reasoned before, it should be faster than p2,
since |⟨(0, 0)⟩| is always at least one, but usually larger. In the above plots, we normalize
F3 by p2, and find that the remaining normalized plot is straight on a semilogx plot. In
Sage, whenever constructing a scatter plot with points, it’s easy to use the parameters
scale='semilogx', scale='semilogy', scale='loglog' to check out if data grows exponentially, loga-
rithmically, or according to power laws. After determining the data grows logarithmically,
we normalize by a logarithm and find that in the last plot F3(p)

p2 ln p
∼ .82.

While this data is encouraging in that it is clearly convergent, these ratios do not imme-
diately yield the truth. 61% and 82% are just approximations of the limits I believe exist,
However, these limits’ computation is, for the moment, inaccessible to me.

Rather, what I have found instead of a limit value is an incredible apparent bound above
the ratio F1(p)/F2(p).
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4.2 Generating a Subgroup with (0, 0)

(a) F1(p)/F2(p) is Less Than
√
e for 100 Primes

(b) ln(F1(p)/F2(p)) is Less Than 1/2 for 100 Primes

Figure 4.14: F1 and F2 Revisited with Logarithms

I originally plotted F2(p)/F1(p) because I reasoned that as a ratio of the group, the order of
⟨(0, 0)⟩ might have regular behavior. However, F1(p)/F2(p) resembles the algebraic index
much more, and has been highly worth investigating. Noticing that it is bounded by

√
e

has startled me incredibly. After seeing this, I found I was even better able to capture this
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4 A Numerical Investigation

bound with a plot of (F1(p), F2(p)). The next plot is bounded and hugged so nicely by
the plot of y = x√

e
out to 108, although the proximity to the line seems to be decaying.

Figure 4.15: Graphs of (F1(p), F2(p)) and (p, F2(p)
√
e− F1(p))

Why any of this happens, I do not know. It seems perfectly reasonable to me that the data
could tend to a number less than or near

√
e in the limit. However, it has surprised me

to find such a strong apparent bound at all in the first 100 values of the ratio of F1/F2.
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4.3 When is the Subgroup the Group?

4.3 When is the Subgroup the Group?

Figure 4.16: A Graph of (|EA,B(Fp)|, |⟨(0, 0)⟩|) for 100 Primes

While the previous experiments have confounded, confused, and bewildered me at times,
I have found a way forward. In figure 4.16, there is a ray extending from the origin at
slope 1, 1

2
, 1

3
, 1

4
, and so on. Each of the rays extending from the origin makes up some

proportion of the graph. Not only is it feasible to measure this proportion, but in some
cases we may easily uncover the limiting behavior of the proportion. Now is when I would
like the reader to recollect the horizontal lines at one from Reducing E(Q) into E(Fp),
because the first natural question in this new investigation is how often is ⟨(0, 0)⟩ = E(Fp).
This frequency is exactly the proportion of the graph at each prime in figure 4.16 which
has slope one.

To make my question more precise, I will investigate the following function to the best of
my ability.

F̃ (p, n) =
#{A,B (mod p) such that n divides [EA,B : ⟨(0, 0)⟩]}

#{nonsingular EA,B (mod p)}

We will consider separately how often ⟨(0, 0)⟩ = EA,B(Fp), and for all values of n > 1
the function F̃ (p, n) measures for each prime family the proportion of curves which would
appear in figure 4.16 on the rays with inverse slope divisible by n.

39



4 A Numerical Investigation

Figure 4.17: How Often is ⟨(0, 0)⟩ = EA,B(Fp)?

Figure 4.18: F̃ (p, 2)

Figure 4.19: F̃ (p, 3)
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4.3 When is the Subgroup the Group?

It appears that the ratio of curves in our families for each prime with ⟨(0, 0)⟩ = EA,B(Fp)
converges to approximately 44%. Further, for 2-divisibility and 3-divisibility, three distinct
limits have been computed for which I have found that the data converges to according
to an inverse power law. For F̃ (p, 3), I had to divide the primes into those which are
1 (mod 3) and 2 (mod 3) to make sense of the data.

F̃ (p, 2) ∼ 10

24
, F̃ (p = 1 (mod 3), 3) ∼ 33

216
, F̃ (p = 2 (mod 3), 3) ∼ 36

216
.

Error 10
24 − F̃ (p, 2) on a loglog plot

Error 36
216 − F̃ (p = 2 (mod 3), 3) on a loglog plot

Figure 4.20: Error Decays Exponentially
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A Galois theoretical heuristic also supports these claims. Through using the group struc-
ture of E(Fp) and the doubling formula we may calculate how and when we should expect
the (0, 0) point to appear in the group’s multiplication table. Through the study of the
roots of particular polynomials, perhaps we will find a method to compute the limit value
of F̃ (p, n) for any n. However, that is for another paper.

I have yet to find a direct argument for the ratio of each prime family of curves which have
the property that ⟨(0, 0)⟩ = E(Fp). However, in answering how often the index is two-
divisible and three-divisible, one more path forward in investigation of the subgroups of
E(Fp) generated by E(Q)’s free-generators is established. Given the values of F̃ (p, n) for all
integers n > 1, the ratio for which ⟨(0, 0)⟩ = E(Fp) becomes a simple inclusion/exclusion
principle based computation. Understanding this ratio is one way we may soon know
something more about the relationship between the infinite free part of elliptic curves and
their finite field reductions.

Conclusion of Experiments

What do we make of our experiments in sum? Is the failure to understand the reduction
of rational elliptic curves E(Q) into finite field elliptic curves E(Fp) equivalent to having
learned nothing? Is understanding E(Fp) all we can hope for, and that the rank of an
elliptic curve is and forever will be beyond us? No. While elliptic curves will remain
mysterious until we can more fully understand the rank, it is through interrelating the
rank of elliptic curves to objects which we more thoroughly understand that we will be able
to uncover the explanations to elliptic curve’s rank. In our first experiment we have verified
through computation that understanding the rank of an elliptic curve and its influence
on the curves behavior is no small task. In the second experiment, we have demonstrated
that we can meaningfully connect the theory of the free part of rational elliptic curves to
finite field elliptic curves. Finally, in the third experiment, we demonstrate concrete means
to use this connection to uncover the laws governing part of an elliptic curves behavior.
In sum, we have performed a small investigation into the relationship between an elliptic
curve’s free part and the curves algebraic behavior in finite field reductions.

4.4 On Progress

Never before have the means of scientific discovery been so accessible as they are now
in mathematics. SageMath and all other programming languages make it such that any
individual may begin on the path to discovery, and hope for success. Having discovered
the remarkable apparent

√
e bound, a few limit values for F̃ (p, n), and several beautiful

plots along the way, it is evident that progress through numerical investigation is truly
viable. Elliptic curves may remain mysterious for a long time to come, but progress is
undoubtedly certain, perhaps from amateurs and professionals alike.
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